200,647 research outputs found

    High Speed and Low-Complexity Hardware Architectures for Elliptic Curve-Based Crypto-Processors

    Get PDF
    The elliptic curve cryptography (ECC) has been identified as an efficient scheme for public-key cryptography. This thesis studies efficient implementation of ECC crypto-processors on hardware platforms in a bottom-up approach. We first study efficient and low-complexity architectures for finite field multiplications over Gaussian normal basis (GNB). We propose three new low-complexity digit-level architectures for finite field multiplication. Architectures are modified in order to make them more suitable for hardware implementations specially focusing on reducing the area usage. Then, for the first time, we propose a hybrid digit-level multiplier architecture which performs two multiplications together (double-multiplication) with the same number of clock cycles required as the one for one multiplication. We propose a new hardware architecture for point multiplication on newly introduced binary Edwards and generalized Hessian curves. We investigate higher level parallelization and lower level scheduling for point multiplication on these curves. Also, we propose a highly parallel architecture for point multiplication on Koblitz curves by modifying the addition formulation. Several FPGA implementations exploiting these modifications are presented in this thesis. We employed the proposed hybrid multiplier architecture to reduce the latency of point multiplication in ECC crypto-processors as well as the double-exponentiation. This scheme is the first known method to increase the speed of point multiplication whenever parallelization fails due to the data dependencies amongst lower level arithmetic computations. Our comparison results show that our proposed multiplier architectures outperform the counterparts available in the literature. Furthermore, fast computation of point multiplication on different binary elliptic curves is achieved

    OverSketch: Approximate Matrix Multiplication for the Cloud

    Full text link
    We propose OverSketch, an approximate algorithm for distributed matrix multiplication in serverless computing. OverSketch leverages ideas from matrix sketching and high-performance computing to enable cost-efficient multiplication that is resilient to faults and straggling nodes pervasive in low-cost serverless architectures. We establish statistical guarantees on the accuracy of OverSketch and empirically validate our results by solving a large-scale linear program using interior-point methods and demonstrate a 34% reduction in compute time on AWS Lambda.Comment: Published in Proc. IEEE Big Data 2018. Updated version provides details of distributed sketching and highlights other advantages of OverSketc

    High-level synthesis optimization for blocked floating-point matrix multiplication

    Get PDF
    In the last decade floating-point matrix multiplication on FPGAs has been studied extensively and efficient architectures as well as detailed performance models have been developed. By design these IP cores take a fixed footprint which not necessarily optimizes the use of all available resources. Moreover, the low-level architectures are not easily amenable to a parameterized synthesis. In this paper high-level synthesis is used to fine-tune the configuration parameters in order to achieve the highest performance with maximal resource utilization. An\ exploration strategy is presented to optimize the use of critical resources (DSPs, memory) for any given FPGA. To account for the limited memory size on the FPGA, a block-oriented matrix multiplication is organized such that the block summation is done on the CPU while the block multiplication occurs on the logic fabric simultaneously. The communication overhead between the CPU and the FPGA is minimized by streaming the blocks in a Gray code ordering scheme which maximizes the data reuse for consecutive block matrix product calculations. Using high-level synthesis optimization, the programmable logic operates at 93% of the theoretical peak performance and the combined CPU-FPGA design achieves 76% of the available hardware processing speed for the floating-point multiplication of 2K by 2K matrices

    Speeding up the elliptic curve scalar multiplication using the window- w non adjacent form

    Get PDF
    Nowadays, elliptic curve based cryptosystem is an efficient public key cryptosystem, The very expensive operation in this cryptographic protocol is the elliptic curve scalar multiplication (elliptic curve point multiplication). Efforts have been mainly focused on developing efficient algorithms for representing the scalar which is involved of elliptic curve scalar multiplication. One of these is using the window- w non adjacent form method. In the present work, the accelerating elliptic curve scalar multiplication using the window- w non adjacent form method is proposed, where the number of operations in the elliptic curve scalar multiplication has been reduced. The expected gain is about 20%, 14% and 7.6% comparing with using the anther methods to compute the elliptic curve scalar multiplication. 20%
    corecore